Limpieza de datos básica con Python

Por: Isabel Yepes

Los conjuntos de datos que podemos obtener no siempre cuentan con el formato o completitud necesarios para ser analizados apropiadamente.  El proceso de limpieza consiste en eliminar o reemplazar elementos de un conjunto de datos de forma que afecten lo menos posible los resultados finales. Usaremos la librería Pandas de Python para realizar el proceso de limpieza de datos.

Tomaremos como referencia el código presentado en Developer Intelligence, dado que el dataset que proponen no está disponible, hemos ubicado uno similar en Kaggle, para descargarlo se debe crear una cuenta usando google o facebook. El dataset se llama iMDB 5000 Movie Dataset y contiene información sobre películas, sus rankings, fecha de estreno, título, país, entre otros datos que completan 28 columnas, en un archivo llamado “movie_metadata.csv”.

Screenshot 2018-09-15 17.38.47

Podemos observar inspeccionando el archivo descargado que algunas filas tienen valores faltantes, tanto numéricos como texto.

Desde Python3 primero importaremos la librería pandas que ya debe estar instalada, y luego los datos indicando que la columna title_year que contiene el año de estreno sea tipo string.

>>>import pandas as pd
>>>data = pd.read_csv("movie_metadata.csv", dtype={"title_year": str})

Si desplegamos la columna title_year encontraremos que efectivamente se trata como un string sin punto decimal al final y en los campos donde no hay valores aparece NaN

>>>data["title_year"]

Screenshot 2018-09-15 17.48.17

Podemos eliminar las filas que no tengan valor asignado en la columna title_year del siguiente modo

>>>data = data.dropna(subset=["title_year"])

Después de esta operación vemos como las filas se reducen de 5043 a 4935. Sin embargo tengamos en cuenta que en la nueva matriz los índices no se renumeran, simplemente quedan suprimidos los índices de las filas eliminadas.

Screenshot 2018-09-15 17.57.41

Si quisiéramos eliminar todas las filas a las cuales les faltase un valor usaríamos data.dropna() para eliminar solo las filas con todos los valores faltantes usaríamos data.dropna(how=’all’) y para eliminar las filas que superen un número de valores faltantes (por ejemplo dos o más) usaríamos data.dropna(thresh=2)

Para el caso de la duración podríamos sacar estadísticas de dicha columna numérica, para ello usamos el siguiente comando.

>>>data.duration.describe()
count    4923.000000
mean      108.167378
std        22.541217
min         7.000000
25%        94.000000
50%       104.000000
75%       118.000000
max       330.000000
Name: duration, dtype: float64

Estos resultados incluyen las filas que son cero que desvían los resultados, un modo de limpiar los datos es reemplazarlas por el valor promedio de las filas restantes (sin ceros) así:

>>>data.duration = data.duration.fillna(data.duration.mean())

Si buscamos en la columna los valores que antes eran cero por rangos, podremos ver lo siguiente.

>>> data.duration[190:200]
192    101.000000
193    138.000000
194    107.000000
195    142.000000
196    165.000000
197    100.000000
198     82.000000
199    108.167378
200     98.000000
201     95.000000
Name: duration, dtype: float64

Hagamos una anotación, dado que primero se suprimieron las filas con el año de estreno vacío y luego se calculó el promedio de duración, el valor de promedio podría verse alterado por los datos suprimidos, en el video al final de este post podrás ver que al hacerlo en orden inverso hay una ligera variación del promedio.

Podemos observar los tipos de datos de todas las columnas así:

>>> data.dtypes
color                         object
director_name                 object
num_critic_for_reviews       float64
duration                       int32
director_facebook_likes      float64

Si no es relevante conservar los decimales del promedio, podemos convertir esta columna de formato flotante en entera del siguiente modo.

>>> data.duration = pd.Series(data["duration"], dtype="int32")

Al visualizar el mismo rango ya no tendrá los decimales por tratarse de valores enteros.

>>> data.duration[190:200]
192    101
193    138
194    107
195    142
196    165
197    100
198     82
199    108
200     98
201     95
Name: duration, dtype: int32

Podríamos hacer lo opuesto, convertir un valor numérico en texto, lo cual se logra del siguiente modo, lo haremos sobre un nuevo dataframe porque para nuestros datos no requerimos esa transformación.

>>>data2 = data.duration.astype(str)
>>> data2[:10]
0       178
1       169
2       148
3       164
5       132
6       156
7       100
8       141
9       153
10      183
Name: duration, dtype: object

En algunos casos es mejor reemplazar el indicador de dato faltante NaN por un texto vacío o con un texto más indicativo como “Not Known”, por ejemplo en la columna content_rating.

>>>data.content_rating = data.content_rating.fillna("Not Known")
>>> data.content_rating[96:100]
97         PG-13
98     Not Known
99         PG-13
100        PG-13
Name: content_rating, dtype: object

Podemos renombrar columnas para que tengan nombres más intuitivos

>>>data = data.rename(columns = {"title_year":"release_date", "movie_facebook_likes":"facebook_likes"})

A partir de esto podremos acceder a las columnas con sus nuevos nombres

Para cambiar a mayúsculas una columna y eliminar los espacios al final usamos str.upper() y str.strip() respectivamente.

>>> data.movie_title = data["movie_title"].str.upper()
>>> data.movie_title = data["movie_title"].str.strip()
>>> data.movie_title[:10]
0 AVATAR
1 PIRATES OF THE CARIBBEAN: AT WORLD'S END
2 SPECTRE
3 THE DARK KNIGHT RISES
5 JOHN CARTER
6 SPIDER-MAN 3
7 TANGLED
8 AVENGERS: AGE OF ULTRON
9 HARRY POTTER AND THE HALF-BLOOD PRINCE
10 BATMAN V SUPERMAN: DAWN OF JUSTICE

Una vez terminamos exportamos el resultado a un nuevo archivo .csv pudiendo especificar el tipo de codificación, para el caso UTF-8

data.to_csv("cleanfile.csv", encoding="utf-8")

El resultado final nos da un archivo con el formato deseado y sin faltantes en las columnas de interés.

Screenshot 2018-09-15 17.36.00

Si tenemos que realizar el mismo proceso con muchos archivos generaremos un script con el proceso de transformación ya probado, de modo que podamos ejecutarlo cuantas veces lo necesitemos.

El siguiente video explica de forma detallada el proceso antes descrito.

Advertisement

Comentarios

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.