Operaciones básicas con Python y Numpy

Una vez hemos instalado Python y un IDE básico, comencemos a operar.

Operaciones sencillas como suma, división, entre otros.  El tipo de una variable se define al momento de asignarle valor:

entero = 3 + 5
flotante = 5 / 13
#mostrar el resultado
print(entero)
#mostrar una operación
print(flotante + entero)
#imprimir tipo de variable
print(type(flotante))
#Asignar un string
texto = "Esto es el resultado de dos variables "
resultado = entero + flotante
#Imprimir textos y números
print(texto + str(resultado))

También podemos crear listas, los elementos pueden ser de diferente tipo.

sublista1 = [3, "pedro"]
#Hacer listas de listas
sublista2 = [5, "juan"]
lista = [sublista1, sublista2]
#O concatenar las listas
listaconcatenada = sublista1 + sublista2
#Las listas también pueden imprimirse
print(lista)
print(listaconcatenada)

Las listas no permiten hacer operaciones numéricas entre ellas, para ello necesitamos arreglos, que están dispuestos en la librería numpy.

#Importamos la librería y si lo deseamos le asignamos un nombre corto con "as"
import numpy as np
#Podemos crear listas comunes y llevarlas a arreglos
estatura = [1.55, 1.70, 1.80, 1.75, 1.60]
peso = [60.2, 67.5, 95.3, 50.3, 68.2]
np_estatura = np.array(estatura)
np_peso = np.array(peso)
#una vez son arreglos podemos hacer cálculos elemento a elemento
#**2 es elevar a la segunda potencia
bmi = np_peso / np_estatura**2
#Y mostrar el resultado, para este caso el índice de masa corporal
print(bmi)

Los arreglos solo permiten un único tipo de datos.  Para extraer un dato recurrimos al índice del arreglo, recordar que inicia en cero.

print(estatura[1])

O usar una condición para extraerlo

#Buscar los BMI menores a 18.5, que es considerado bajo peso
condicion = bmi < 18.5
#Se obtiene un arreglo que indica cuáles posiciones cumplen o no la condición
print(condicion)
#Se usa este arreglo para extraer los resultados deseados.
print(bmi[condicion])

Podemos crear arreglos de N dimensiones, pero teniendo en cuenta que solo tendrán un único tipo de datos.

np_2dimensiones = np.array([peso, estatura])
#El tipo es numpy.ndarray
print(type(np_2dimensiones))
#Contiene 2 filas y 5 columnas
print(np_2dimensiones)

Para especificar elementos individuales usamos los índices: [fila][columna]

#Una sola fila
np_2dimensiones[0]
#Un solo elemento
np_2dimensiones[1][2]

Para especificar un subrango: [rango_fila, rango_columna] y produciremos la intersección de los rangos.

  • El signo “:” significa incluir todo el rango de fila o columna
  • Al especificar un rango el fin especificado estará una posición más allá del fin deseado, así inicio:fin + 1
  • Si queremos desde un inicio hasta el fin, así inicio: 
#Una sola columna
np_2dimensiones[:,1:2]

numpy permite calcular algunas variables estadísticas, puedes explorar más en la documentación de Numpy.

#Media o promedio
np.mean(np_array)
#Mediana
np.median(np_array)
#Coeficiente de correlación
np.corrcoef(np_array1,np_array2)
#Desviación estándar
np.std(np_array)
#Suma
suma = np.sum(np_peso)
#Ordenar
arrayordenado = np.sort(np_peso)

También permite generar datos aleatorios, en este ejemplo generaremos datos redondeados a 2 cifras decimales, en una distribución normal, especificando la media, la desviación estándar y el número de muestras:

nro_cifras = 2
media_altura = 1.60
desv_std_altura = 0.20
muestras = 5000
media_peso = 60
desv_std_peso = 20
np_altura_aleatoria = np.round(np.random.normal(media_altura,desv_std_altura,muestras),nro_cifras)
np_peso_aleatorio = np.round(np.random.normal(media_peso,desv_std_peso,muestras),nro_cifras)
arreglo_altura_peso = np.column_stack((np_altura_aleatoria,np_peso_aleatorio))

np.column_stack crea un arreglo ubicando los datos generados en columnas.

Un poco sobre lo que comentamos antes en

 

 

One thought on “Operaciones básicas con Python y Numpy

Comentarios

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.